Nonuniqueness theorem for a singular Cauchy-Nicoletti problem
نویسندگان
چکیده
منابع مشابه
Nonuniqueness Theorem for a Singular Cauchy-nicoletti Problem
The nonuniqueness of a regular or singular Cauchy problem for ordinary differential equations is studied in several papers such as [3, 4, 5, 13, 14, 15, 16, 17]. Most of these results can also be found in the monograph [1]. The uniqueness of solutions of Cauchy initial value problem for ordinary differential equations with singularity is investigated in [7, 8, 9, 12]. The topological structure ...
متن کاملThe Cauchy–nicoletti Problem with Poles
The Cauchy–Nicoletti boundary value problem for a system of ordinary differential equations with pole-type singularities is investigated. The conditions of the existence, uniqueness, and nonuniqueness of a solution in the class of continuously differentiable functions are given. The classical Banach contraction principle is combined with a special transformation of the original problem. Introdu...
متن کاملA Multidimensional Singular Boundary Value Problem of the Cauchy–nicoletti Type
A two-point singular boundary value problem of the Cauchy–Nicoletti type is studied by introducing a two-point boundary value set and using the topological principle. The results on the existence of solutions whose graph lies in this set are proved. Applications and comparisons to the known results are given, too. Introduction Consider the system of ordinary differential equations y′ = f(x, y),...
متن کاملA singular abstract cauchy problem.
In this note a singular abstract Cauchy problem is considered. A solution is obtained for this problem in terms of a regular abstract Cauchy problem. As an application we obtain a new solution of the initial value problem for a class of singular partial differential equations.
متن کاملA Numerical Method for Cauchy Problem Using Singular Value Decomposition
We consider the Cauchy problem for Laplacian. Using the single layer representation, we obtain an equivalent system of boundary integral equations. We show the singular values of the ill-posed Cauchy operator decay exponentially, which means that a small error is exponentially amplified in the solution of the Cauchy problem. We show the decaying rate is dependent on the geometry of the domain, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Abstract and Applied Analysis
سال: 2004
ISSN: 1085-3375,1687-0409
DOI: 10.1155/s1085337504306147